A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.
نویسندگان
چکیده
MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.
منابع مشابه
A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis.
The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To fur...
متن کاملFunctional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators.
Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular b...
متن کاملMating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete.
Homokaryons from the homothallic ascomycte Sordaria macrospora are able to enter the sexual pathway and to form fertile fruiting bodies. To analyze the molecular basis of homothallism and to elucidate the role of mating-products during fruiting body development, we cloned and sequenced the entire S. macrospora mating-type locus. Comparison of the Sordaria mating-type locus with mating-type idio...
متن کاملPheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora.
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones a...
متن کاملAutophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora
In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2006